# ISOCYANIDE METAL COMPLEXES 

## I. REACTIONS OF HALOCARBONYLS WITH PHENYLISOCYANIDE

K. K. JOSHI. P. L. PALSSON aND WV. H. STUBBS<br>Chemistry Department, The Rcyal College of Science and Technology; Glasgow (Great Eritain)

(Received May $\mathbf{7}^{i n}, 1963$ )

Extensive studies of the reactions of halo-manganese and -lenium pentacarbonyls (I) with a variety of ligands have been carried out, chiefly by Hieber and his coworkers ${ }^{1-5}$. The results may be represented by tie general expression:


For a given ligand (L), reaction appeared to stop at either stage (II) er (III). Similar reactions ${ }^{6}$ of the neutral cartonyls $\mathrm{Fe}(\mathrm{CO})_{5}$ and $\mathrm{M}(\mathrm{CO})_{5}$ (where $\mathrm{M}=\mathrm{Cr}$, Mo or W ) have likewise been reported to stop after partial replacement of carbon monoxide. With monodentate ligands (L) at least three carbonyl groups were always left atta:ched to the metal atom. This apparent behaviour pattern has never beer explained although it is recognised that replacement of CO by a ligand ( L ) which is less well able to accept back-donation of elections will lead to a strengthening of the remaining metal-CO bonds. Nevertheless it semed probable that more extensive replacement of carion monoxide should be possible, especially with ligands which are known to form stable complexes with these metals in low oxidation states.

We have therefore examined in detail the reaction of bromomanganese pentacarbonyl with phenyl isocyanide. Among the possible ligands, isocyanides may be considered to be most like carbon monoxide in structure and mode of bonding to a transition metal. They were known to form stable derivatives of manganese in the $\div 1$ oxidation state ${ }^{-}: \mathrm{Mn}^{\mathrm{M}}(\mathrm{CNPh})_{6}^{\dagger}$ containing no other groups. But only mono-43 (IIa; $\mathrm{X}=\mathrm{Br} ; \mathrm{L}=\mathrm{CNEt}$ ) and bis-isocyanide ${ }^{\mathrm{Ib}}$ derivatives (IIIa; $\mathrm{X}=\mathrm{Br} ; \mathrm{L}=$ $p-\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{OM}$ ) had been reported to be formed from the corresponding carbenyl ( $\mathrm{Ia} ; \mathrm{X}=\mathrm{Br}$ ). We have confirmed that the disubstituted compound (IIIa; $\mathrm{X}=\mathrm{Br}$; $\mathrm{L}=\mathrm{CNPh}$ ) is the only product with phenyl isocyanide under Hieber's conditions ${ }^{10}$, using ethanol as solvent. However, in diglyme at $100^{\circ}$ the reaction proceeded to the next stage yielding bromodicarbonyltris(phenyl isocyanide)manganese (IV, $\mathrm{X}=\mathrm{Br}$ ). This solvent is known to assist replacement of three carbonyl groups from molybdenum hexacarbony: by forming an intermediate complex in which it acts as a tridentate ligand ${ }^{3}$. The present result can probably be ascribed to the formation of a similar inzermediate and not merely to the higher temperature employed in this case.

In support of this view we have shown that three molecules of carbon monoxide are evolved when bromomanganese pentacarbonyl is heated with diglyme alone.

Still more striking was the effiect of using the strongly basic ethar tetrahydrofrian as solvent. Its ability to act as a ligand forming stable transition metal complexes is well known. In the present work it was found that bramenauganese pentacarbonyl ( $\mathrm{I} 2 ; \mathrm{X}=\mathrm{Br}$ ) loses four molecules of carbon monoxide on refluxing in this medium with the formation of a stable complex ${ }^{9}$. Accordingly reaction with phenyl is ravanide in tetrahydrofuran gave bromocarbonyltetrakis(phenyl isucyanide) manganese ( $\mathrm{V} ; \mathrm{X}=\mathrm{Br}$ ) as the main product accompanied by bromopentakis(plenyl isocyanide)manganese (VI). The former complex ( V ; $\mathrm{X}=\mathrm{Br}$ ) was also obtained by the action of four molar equivalents of isocyanide on bromotricarbonyibis(triphenyiphosphine)manganese (IIIa; $\mathrm{X}=\mathrm{Br} ; \mathrm{L}=\mathrm{PPh}_{3}$ ) in the same solvent. The carbonyl group in trans position to the halogen would be expected to be the least readily replaceable ${ }^{10}$ and we therefore believe (V) to be the comect stereochemical formulation for our product. The precise stereochemistry of the tris-isocyanide compiex (IV) is at present unknown, but the bis-isocyanide complex (III; $\mathrm{X}=\mathrm{Br}$; $\mathrm{M}=\mathrm{Mn} ; \mathrm{L}=\mathrm{CNPh}$ ) may be assigned the cis configuration on the basis of the work of Argelici, Basolo and Poe ${ }^{11}$ and the close resemblance of its infrared spectruni in the carbonvi region to that of the phosphite analogue (III; $M=M n ; X=B r$; $\mathrm{L}=P(\mathrm{OPn})_{3}$ ). To complete the series (I-YI) by preparing the mono-isocyanide

(v)
compiex (IIa; $\mathrm{X}=\mathrm{Br} ; \mathrm{L}=\mathrm{CNPh}$ ), we have utilized the dimeric lalocarbony- $\mathrm{l}^{3 n}$, iIns $(C O)_{s} B r$. As expected the isocyanide caused cleavage of the halogen bridges in this molecule under conditions too mild to result in replacement of carbon monoxide.

Further differences in reactivity may be expected to result from variation of the halogen atoms in the halopentararbonyls (I). These differences have recently been investicated quantitatively by Basolo and coworkers, who find that both for carbon monoxide exchange ${ }^{3 b}$ and for reaction with a variety of other ligandsta, the rates fall in the order $\mathrm{Cl} \geqslant-\mathrm{Br}>\mathrm{I}$. Both these results and the differences in the infrared spactra ${ }^{3 n}$ can be correlated with the decreasing electronegativity of these halogens, which win lead to more effective back-doration to CO in the iodide, i.e. to stronger metai-carbon bonding. Our own results, zhough qualitative, reveal equally striking differences. Thus, under conditions whee the bromide ( $\mathrm{Ia} ; \mathrm{X}=\mathrm{Br}$ ) was partly coaveried to the pencakis-isocyanide derivative ( VI ), the iodide ( $\mathrm{Ia} ; \mathrm{X}=\mathrm{I}$ ) gave only the tetrakis derivative $\left({ }^{\prime} ; 1=1\right.$ ), but the caloride gave ionic hexakis(phenyl isccyamide) manganese( I ) chloride, $\mathrm{Mn}(\mathrm{CNPh})_{6} \mathrm{Cl}$

Similar resuits have been obtained with carboryl halides of molybdenum and iron: Pheny: isocranide displaced three molecules of carbon monoxide from chlorotrica:bonylexclopentadien:lmoịbdenum ( $\mathrm{VII} ; \mathbf{X}=\mathrm{Cl}$ ) and gave tris(phenyl iso-
cyanide)cyclopentadienylmolybdenum chloride, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CNPh})_{3} \mathrm{Cl}$. It reacted with the corresponding iodide (VII; $\mathrm{X}=\mathrm{I}$ ) by replacement or only one carbonyl group. The analogous iron compounds (VIII; $L=C O$ ) were treated with the isocyanide in benzene. The iodide (VIII; $\mathrm{X}=\mathrm{I} ; \mathbf{L}=\mathrm{CO}$ ) afforded a mixture of mono- (VIII; $\mathrm{X}=\mathrm{I} ; \mathrm{I}=\mathrm{XNPh}$ ) and bis(phenyll isocyanide) derivatives. The bromide gave only the latter type, and the chloride underwent addition and substitution to give the ionic tris(phenyl isocyanide)cyclopentadienyliron chloride. These iron compounds

(ViI)

(viII)

(IX)
show similar diferences in their reactions with triphenyiphosphine. The choride (VIII; $\mathrm{X}=\mathrm{Cl} ; \mathrm{L}=\mathrm{CO}$ ) has been shown ${ }^{12}$ to give mainly the ionic addition product ( $\mathrm{IX} ; \mathrm{X}=\mathrm{Cl}$ ) whereas the iodide (VIII; $\mathrm{X}=\mathrm{I} ; \mathrm{L}=\mathrm{CO}$ ) gives a mixture of the addition ( $\mathrm{IX} ; \mathrm{X}=\mathrm{I}$ ) and substitution (VIII; $\mathrm{X}=\mathrm{I} ; \mathrm{L}=\mathrm{PPh}_{3}$ ) products.. The latter compound was found to react with phenyi isoryanice in the same manner as the corresponding dicarhonyl (VIII; $\mathrm{X}=\mathrm{I} ; \mathrm{L}=\mathrm{CO}$ ), but attempts to bring about the reverse process, replacement of isocyanide (or CO) from complex (VIII; $X=I$; $\mathrm{L}=\mathrm{=} \mathrm{CNPh}$ ) by triphenylphosphine failed. Together with the abovementioned behaviour of bromotricarbonylbis(triphenylphosphine)mang:inese, these experiments show that replacement of the phosphine is easier than repacement of either carbon monoxide or isocranide from such mixed complexes.

We have also examined the reactions of phenyl isocranide with methyl- and phenylpentararbonylmanganese $(\mathrm{N} ; \mathrm{R}=$ Me or Ph$)$, By analogy with their behariour

with carbon monoxide ${ }^{6}$ and with amines ${ }^{13}$, we expected addition to occur with the formation of actl derivatives of the type ( $\mathrm{XI} ; \mathrm{L}=\mathrm{CNPh}$ ). Instead, the only products isolated, albeit in low yield, were mono- (NII) and disubstitution products ( XIII ) of dimanganese decacarionyl. The fate of the methyl and phenyl groups in these reactions has not been deterrined.

## ENPEMIMENTAL

All reactions were conducted under nitrogen.
Starting materials were prepared by the literature methods indicated: $\mathrm{BrMn}(\mathrm{CO})_{5}^{33} ; \mathrm{PhNC}^{14} ; \mathrm{Mn}\left(\mathrm{CNPh}_{6} \mathrm{I}^{-7} ; \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{X}^{-15} ; \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~N}^{-6} ; \mathrm{Me}^{2}\right.$ and $\mathrm{PhMn}\left(\mathrm{CO}_{5}\right)^{10} ; \mathrm{Br}_{2} \mathrm{Mn}_{2}(\mathrm{CO})_{5}^{3 \mathrm{a}} ; \mathrm{Br} 3 \mathrm{In}\left(\mathrm{CO}_{3}{ }_{3}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{1 a} ; \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{I}^{\mathrm{s}}\right.$.
TABLE 1

|  (s mandel |  |  |  |  | Solize: ${ }^{-1}$ ( in $\pi$ ? |  | Reziticn semp: | Timz | Struture | $\begin{gathered} \text { Prodicit: } \\ \mathbf{z} \end{gathered}$ | $\because$ Oing ar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Br} \mathrm{Mr}_{4}(\mathrm{CO})_{3}$ | 0.43 | 0.S7 | 0.5 | $s$ | T | 50 | r.t. | + | $\mathrm{Br} \mathrm{Mn}\left(\mathrm{CO}_{3}\right) \mathrm{CNPh}$ | 0.14 | 45 |
| Brinn(CO)s | 2.75 | 10 | 2.06 | 20 | A | 60 | $60^{=}$ | 3 | BrMn $(\mathrm{CO})_{3}(\mathrm{CNPH})=$ | 3.05 | 7 O |
| ErMn(CO) ${ }_{3}$ | 1.37 | 5 | 1.54 | 15 | D | 30 | $100=$ | 3 | $\left.\mathrm{BrMn} \mathrm{CO})_{\text {( }}^{(\mathrm{CNP}}\right)$ | I. 6 | 65 |
| $13 \mathrm{sn}(\mathrm{CO})_{5}$ | 0.3 | 1.5 | 1.0 | 10 | T | 30 | R | 3 | Min(CO)(CSPh) | 0.47 | 51 |
| $\mathrm{BrMn}(\mathrm{CO})_{3}\left(\mathrm{Pr}_{\mathrm{n}_{3}}\right)_{2}$ | 1.33 | - 5.5 | 1.03 | 10 | T | 50 | R | 3 | $\mathrm{BrMn}(\mathrm{CO})(\mathrm{CNPh})_{\text {\% }}$ | 0.63 | 44 |
| BrMn( CO$)_{5}$ | 2.75 | 10 | 5.15 | 50 | T | 100 | R | 6 |  | 2.3 0.4 | +6.1 |
| $\left.\mathrm{CMMn}^{(C O)}\right)_{3}$ | 2.3 | 10 | 5.15 | 50 | T | 50 | R | 4 | $\mathrm{Cl}=\mathrm{Mn}(\mathrm{CNPh})_{6}$ : | 2.3 | 32 |
| $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{I}$ | 1.3 | 5 | +12 | 40 | T | 50 | $\mathbf{R}$ | 3.5 | $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Mo}(\mathrm{CO})_{=}(\mathrm{CNPh}) \mathrm{I}$ | 0.42 | 19 |
| $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{MO}\left(\mathrm{CO}_{3} \mathrm{Cl}\right.$ | 1.4 | 5 | 1.5 | 15 | T | 50 | R | 4 | $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Mo}(\mathrm{CNP})_{3} \mathrm{Cl}$ | 1.2 | 45 |
| $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{I}$ | 13.2 | 60 | 9.0 | 570 | B | 150 | $\mathbf{R}$ | 6 |  | 0.1 | I |
|  |  |  |  |  |  |  |  |  | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO}) \mathrm{I}^{\text {I }}$. | 9.7 | 53 |
|  |  |  |  |  |  |  |  |  |  | 8.5 2.3 | 35 5 |
| $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Br}$ | 1.25 | 5 | 1.01 | 10 | B | 60 | R | 3 | $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Fe}(\mathrm{CXPh})=\mathrm{Br}$ | 0.75 | 37 |
| $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}$ | +2. | 20 | 6.15 | 50 | B | 50 | $\underline{R}$ | 1.5 |  | 6.3 | 68 |
| $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})(\mathrm{CNPh}) \mathrm{I}$ | 1.23 | 3.3 | 0.57 | $3.31!$ |  |  | R | 3 | $\mathrm{C}_{3} \mathrm{Hi}_{5} \mathrm{Fe}(\mathrm{CO})(\mathrm{CNF} \cdot \mathrm{hjI}$ | 1.1 | S9 |
| $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Fc}\left(\mathrm{CCO} \mathrm{i}^{\left(\mathrm{PPH}_{3}\right) \mathrm{I}}\right.$ | 1.08 | 2 | 0.2 |  |  | 60 | R | 3 | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})(\mathrm{CNPh}) \mathrm{I}$... | $0.04^{3}$ | 6 |
|  |  |  |  |  |  |  |  |  | $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPH}_{3}\right)^{\text {c }}$ $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CNPh})_{2} \mathrm{I}$ | 0.15 | 9 |
| $\mathrm{CH}_{2} \mathrm{Mn}\left(\mathrm{CO}_{3}\right.$ | 2.1 | 10 | 1.8 | 15 | T | 40 | R | 3 |  | 0.015 |  |
|  |  |  |  |  |  |  |  |  |  | 0.132 | 5.6 |
|  |  |  |  |  |  |  |  |  | $\boldsymbol{M} n_{e}(\mathrm{CO})_{8}(\mathrm{CNPh})^{\prime}=$ | 0.112 | 4 |
| $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$ | 2.7 | 1.5 | 1.0 | 10 | T | 60 | R | 2 | $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Mrn}(\mathrm{CO})_{3}{ }^{*+}{ }^{-}$ | - | - |
|  |  |  |  |  |  |  |  |  | $\mathrm{Mr}_{2}(\mathrm{CO})_{9} \mathrm{CNPh}{ }^{* *}$ | 0.14 | 5 |
|  |  |  |  |  |  |  |  |  | $\mathrm{Mn}_{2}(\mathrm{CO})_{8}(\mathrm{CNPO})_{2}{ }^{-* *}$ | 0.095 | 3 |

[^0]TABLE 2

| Fradact | Soinent (s) for crocallicat:ck" | P-P. ( ${ }^{\circ} \mathrm{C}$ ( |  | cclour |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Bran}(\mathrm{CO})_{4} \mathrm{CNPh}$ | MiL | S6-37 | 218S(w), $2107(\mathrm{w}), 2045(\mathrm{~s}), 1993(\mathrm{~m}): \mathrm{CCl}_{4}$ | Yellow |
| $\mathrm{B}=\mathrm{Min}(\mathrm{CO})_{2}\left(\mathrm{CNPh}_{2}\right.$ | $\mathbf{P}$ | 8 -55 | $2198(\mathrm{~m}), 2 \mathrm{xf4}(\mathrm{~s}) .2053(\mathrm{~s}), 2004(\mathrm{~s}) .1954(\mathrm{~s}): \mathrm{KCl}$ | Pale Yellow |
| BrMn(CO) ${ }^{(C N P H i}$ | E | 129-130 | 2179(w), 2i14(s), 20,49(s). 202C(s), 1942(s): KiCl | Yellow |
| 13n(CO)(CNFh) | E | 171 | $2 \mathrm{CS8}(\mathrm{~s}), 1992(\mathrm{~m}), 1 \mathrm{S94}(\mathrm{~s}): \mathrm{KCl}$ | Yellow |
| BrMin(CO)(CNFH) | T | ISo (fec.) | 2101(v.s.). $2012(\mathrm{~m}) .1919(\mathrm{~s}): \mathrm{CCl}_{4}$ | Orange |
| BrMal $\left.{ }^{\text {CNPH}}\right)_{3}$ | T | 213 (dec.) | $2101(v .3)$. 2012(m): $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ | Colourless |
|  | MiL | 178 | 2114(v.s), 2016(s): K(1) | Pale Vellow |
| $\left.\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{HolCO}\right)_{2}(\mathrm{CNFb}) \mathrm{I}$ | P | 75 | 2191(s), 2070(f), 2C04(s), 1942(s): $\mathrm{CCl}_{4}$ | Red |
| $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ma}(\mathrm{CNH5})_{3} \mathrm{Cl}$ | M/L | 180 (dec.) | 2169 (m) , 2096 (s): KCl | Red |
| $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Fe}(\mathrm{CO})(\mathrm{CNFh}) \mathrm{i}$ | MiL | 108 | $2151(\mathrm{~s})$, 1969(s) : Ki | Brown |
| $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Fe}(\mathrm{C}$ \Fb) I | 31/L | 109-105 | $2155(\mathrm{~s}), 2056(\mathrm{~s}), 2024$ (v) : K1 | Red |
| $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Fe}(\mathrm{CNO} \mathrm{F})_{2} \mathrm{Er}$ | 3 HI | 107 | $2155(\mathrm{~s}), 2 \mathrm{CS} 7(\mathrm{~s}), 202 \mathrm{c}(\mathrm{w})$ : Kil | Purple |
| $\mathrm{CliC3}_{3} \mathrm{H}_{3} \mathrm{Fe}(\mathrm{CNFh})_{3}$ ? | M/L | 174 | $219 \mathrm{c}(\mathrm{s}) .2123(\mathrm{~s}): \mathrm{KCl}$ | Orange |
|  | P | 54 | 2169(s), 2102(s). 20,55(s), 2016(s), 19So(s): $\mathrm{CCl}_{4}$ | Eellow |
| $\mathrm{Mn}_{2}(\mathrm{CO})_{8}(\mathrm{CNP})^{\prime}$ | $\mathbf{P}$ | 111 | $\begin{aligned} & =155(\mathrm{w}), 212 \mathrm{~S}(\mathrm{~m}), 2061(\mathrm{~m}), 2620(\mathrm{~m}), 1996(\mathrm{~s}), \\ & 1957 \mathrm{~m}): C l_{s} \end{aligned}$ | Yellow |



Reaction conditions are indicated in Table r; properties of the products in Ta引le 2 and analyses in Table 3.

The mixtures were heated with stirring at the temperatures and for the times indicated. The solvent and excess isocyanide (if any) were then removed by distillation in racto and the products purified by chromatography and/or by recrystallisation as indicated.

## ACKNOWLEDGEMENTS

The authors thank the Ethyl Corporation for generous supplies of manganese and molybderum carbonyls and Irternational Nickel (Mond) Ltd., for iron carbonyl. W.H.S. also thanks the Department of Scientific and Industrial Research for the award of a Research Studentship.

## SCMMEARY

The reactions of phenyl isocyanide with various halomangane:se carbonyls, methyland phenylmanganese pentacarbonyls, halocyclopentadienyl-molybdenum and -iron carbonvis are described. The dependence of the degree of substitution on the nature of the halogen and the solvent is examined. As a result a number of new isccyanide derivatives of these metals have been isolated and characterised.

## REFERENC:S



```
    b W. Hieber and W. Schrorp, Z. Vaturforsch., 14 (1959) 460.
    c W. Hieber and K. Wollmaxio, Clem. Bet., 95 (iǵse) 1552.
    d W. Hieber and Th. hircce. Cfiem. Ber., 95 (I962) 20-7.
```



```
32 E. W. Abel And G. Wilinisson. J. Chzm. Sac., (1959) r 501.
    b H. C. E. Masnerskaniz and G. Wilkinson. J. Chem. Soc., (1962) +454.
ia K. J. Ancelizi and F. Basolo. J. Am. Chen:- Soc. Sq (ig6z) 2405 -
    b A. Wojcicki and F. Basolo, J. -im. Chene. Soe. S3 (igoi) 525.
5 A. G. Osemrie and M. H. ©. Stid.anrd. J. Came. Soc. (196z) 4715.
6 J. Chatt. P. L. Pitison and L. Xi. Venanzi, in H. H. Zeiss, Grganomedalice Chemiser:
    Reinhold. New York, 1960 , p. \(4^{65-52 S .}\)
t A. Sacco, Ga=z. Chim. Ital.. Só (1956) 201.
3 R. P. Mi Werner hivo T. H. Coffield, Chem. Ind. (Lohion), (egio) 936.
9 K. K. Josmi. P. L. Patsor ain il:. H. Stiebs, unpublished observations.
jo E. Basolo and R. G. Pearson, in H. J. Enelevs and A. G. Shrrpe, Aivances in Imorganic
    Chemistry and Radiochemistry. Vol. 3. Academic Press, New Yort, 1961. p. 1-S9.
    R. J. Angelici. F. Basolo and A. Poe, Vature, 195 (1962) 993.
12 A. Davison, MI. L. H. Grees and G. Wilinisci, J. Chem. Sec., (196if) 3172.
```



```
14 I. CGi and IR Meyr, Org. Syo., it (195i) 10 t.
15 T. S. Piper and G. Wilkinson, J. Inorg. Nucl. Chemi. 3 (1956) 104-
16 B. F. Hallayr and P. L. Patson. j. Chem. Soc., (1956) 3030.
17 T. II. Coffieid. J. Fiozikovski asid R. D. Clossons. J. Org. Chenk., 22 (1957) 59 S.
```


[^0]:    * $A=$ ethanol: $B=$ benzene; $D=$ diethylene glycol dimethyl ether; $E=$ ether; $L=$ ligroin. b.p. $60 / 30^{\circ} ; M=$ methylene chloride; $P=$ pentane;
    $T=$ tetraindroiuran.
    ** Separated by chromatography on alumina: products (incl. recovered starting material) are given in order of elution.
    

