I. REACTIONS OF HALOCARBONYLS WITH PHENYLISOCYANIDE

K. K. JOSHI, P. L. PAUSON AND W. H. STUEBS

Chemistry Department, The Royal College of Science and Technology, Glasgow (Great Britain)

(Received May 7th, 1963)

Extensive studies of the reactions of halo-manganese and -thenium pentacarbonyls (I) with a variety of ligands have been carried out, chiefly by Hieber and his co-workers¹⁻⁵. The results may be represented by the general expression:

 $\begin{array}{rcl} \mathrm{XM}(\mathrm{CO})_{5} + \mathrm{L} & \longrightarrow & \mathrm{XM}(\mathrm{CO})_{3}\mathrm{L}_{2} \\ \mathrm{(I)} & & \mathrm{(II)} & & \mathrm{(III)} \\ & & \mathrm{a:} & \mathrm{M} = \mathrm{Mn}; & \mathrm{b:} & \mathrm{M} = \mathrm{Re} \end{array}$

For a given ligand (L), reaction appeared to stop at either stage (II) or (III). Similar reactions⁶ of the neutral carbonyls $Fe(CO)_5$ and $M(CO)_6$ (where M = Cr, Mo or W) have likewise been reported to stop after partial replacement of carbon monoxide. With monodentate ligands (L) at least three carbonyl groups were always left attached to the metal atom. This apparent behaviour pattern has never been explained although it is recognised that replacement of CO by a ligand (L) which is less well able to accept back-donation of electrons will lead to a strengthening of the remaining metal-CO bonds. Nevertheless it greened probable that more extensive replacement of carbon monoxide should be possible, especially with ligands which are known to form stable complexes with these metals in low oxidation states.

We have therefore examined in detail the reaction of bromomanganese pentacarbonyl with phenyl isocyanide. Among the possible ligands, isocyanides may be considered to be most like carbon monoxide in structure and mode of bonding to a transition metal. They were known to form stable derivatives of manganese in the ± 1 oxidation state⁷: [Mn(CNPh)₆]^{\pm} containing no other groups. But only mono-^{4a} (IIa; X = Br; L = CNEt) and bis-isocyanide^{1b} derivatives (IIIa; X = Br; L = p-CNC₆H₄OMe) had been reported to be formed from the corresponding carbonyl (Ia; X = Br). We have confirmed that the disubstituted compound (IIIa; X = Br; L = CNPh) is the only product with phenyl isocyanide under Hieber's conditions^{1b}, using ethanol as solvent. However, in diglyme at 100° the reaction proceeded to the next stage yielding bromodicarbonyltris(phenyl isocyanide)manganese (IV, X = Br). This solvent is known to assist replacement of three carbonyl groups from molybdenum hexacarbony! by forming an intermediate complex in which it acts as a tridentate ligand⁸. The present result can probably be ascribed to the formation of a similar intermediate and not merely to the higher temperature employed in this case.

J. Organometal. Chem., 1 (1963) 51-57

In support of this view we have shown that three molecules of carbon monoxide are evolved when bromomanganese pentacarbonyl is heated with diglyme alone.

Still more striking was the effect of using the strongly basic ether tetrahydrofuran as solvent. Its ability to act as a ligand forming stable transition metal complexes is well known. In the present work it was found that bromonauganese pentacarbonvl (Ia; X = Br) loses four molecules of carbon monoxide on refluxing in this medium with the formation of a stable complex⁹. Accordingly reaction with phenyl isocyanide in tetrahydrofuran gave bromocarbonyltetrakis(phenyl isocyanide) manganese (V; X = Br) as the main product accompanied by bromopentakis-(phenyl isocyanide)manganese (VI). The former complex (V; X = Br) was also obtained by the action of four molar equivalents of isocyanide on bromotricarbonvibis-(triphenviphosphine)manganese (IIIa; $X = Br; L = PPh_3$) in the same solvent. The carbonyl group in trans position to the halogen would be expected to be the least readily replaceable¹⁰ and we therefore believe (V) to be the correct stereochemical formulation for our product. The precise stereochemistry of the tris-isocyanide complex (IV) is at present unknown, but the bis-isocvanide complex (III; X = Br; M = Mn; L = CNPh) may be assigned the cis configuration on the basis of the work of Angelici, Basolo and Poe¹¹ and the close resemblance of its infrared spectrum in the carbonyl region to that of the phosphite analogue (III; M = Mn; X = Br; $L = P(OPn)_{a}$. To complete the series (I-VI) by preparing the mono-isocyanide

complex (IIa; X = Br; L = CNPh), we have utilized the dimeric halocarbonyl^{3a}, $hIn_2(CO)_sBr_2$. As expected the isocyanide caused cleavage of the halogen bridges in this molecule under conditions too mild to result in replacement of carbon monoxide.

Further differences in reactivity may be expected to result from variation of the halogen atoms in the halopentacarbonyls (I). These differences have recently been investigated quantitatively by Basolo and coworkers, who find that both for carbon monoxide exchange^{4b} and for reaction with a variety of other ligands^{4a}, the rates fall in the order CI > Br > I. Both these results and the differences in the infrared spectra^{3a} can be correlated with the decreasing electronegativity of these halogens, which will lead to more effective back-doration to CO in the iodide, i.e. to stronger metai-carbon bonding. Our own results, though qualitative, reveal equally striking differences. Thus, under conditions where the bromide (Ia; X = Br) was partly converted to the pentakis-isocyanide derivative (VI), the iodide (Ia; X = I) gave only the tetrakis derivative (V; X = I), but the chloride gave ionic hexakis(phenyl isocyanide) manganese(I) chloride, [Mn(CNPh)₆⁻Cl.

Similar results have been obtained with carbonyl halides of molybdenum and iron: Phenyl isocyanide displaced three molecules of carbon monoxide from chloro-tricarbonylcyclopentadienylmolybdenum (VII; X = Cl) and gave tris(phenyl iso-

cyanide)cyclopentadienylmolybdenum chloride, $C_5H_5Mo(CNPh)_3Cl$. It reacted with the corresponding iodide (VII; X = I) by replacement of only one carbonyl group. The analogous iron compounds (VIII; L = CO) were treated with the isocyanide in benzene. The iodide (VIII; X = I; L = CO) afforded a mixture of mono- (VIII; X = I; L = XNPh) and bis(phenyl isocyanide) derivatives. The bromide gave only the latter type, and the chloride underwent addition and substitution to give the ionic tris(phenyl isocyanide)cyclopentadienyliron chloride. These iron compounds

show similar differences in their reactions with triphenylphosphine. The chloride (VIII; X = Cl; L = CO) has been shown¹² to give mainly the ionic addition product (IX; X = Cl) whereas the iodide (VIII; X = I; L = CO) gives a mixture of the addition (IX; X = I) and substitution (VIII; X = I; $L = PPh_3$) products⁹. The latter compound was found to react with phenyl isocyanide in the same manner as the corresponding dicarbonyl (VIII; X = I; L = CO), but attempts to bring about the reverse process, replacement of isocyanide (or CO) from complex (VIII; X = I; L = CNPh) by triphenylphosphine failed. Together with the abovementioned behaviour of bromotricarbonylbis(triphenylphosphine)manganese, these experiments show that replacement of the phosphine is easier than replacement of either carbon monoxide or isocyanide from such mixed complexes.

We have also examined the reactions of phenyl isocyanide with methyl- and phenylpentacarbonylmanganese (N; R = Me or Ph). By analogy with their behaviour

with carbon monoxide⁶ and with amines¹³, we expected addition to occur with the formation of acyl derivatives of the type (XI; L = CNPh). Instead, the only products isolated, albeit in low yield, were mono- (XII) and disubstitution products (XIII) of dimanganese decacarbonyl. The fate of the methyl and phenyl groups in these reactions has not been determined.

ENPERIMENTAL

All reactions were conducted under nitrogen.

Starting materials were prepared by the literature methods indicated: BrMn(CO)₅^{3a}; PhNC¹⁴; Mn(CNPh)₆⁺I⁻⁷; C₅H₅Mo(CO)₃X¹⁵; C₅H₅Fe(CO)₂X¹⁶; Me- and PhMn(CO)₅¹⁷; Br₂Mn₂(CO)₅^{3a}; BrMn(CO)₃(PPh₃)₂^{1a}; C₅H₅Fe(CO)(PPh₃)I⁹.

[Text continued p. 57]

~	
ш	
E	
A	
ب ر	
H	

Br.Mn ₁ (CO) ₅ 0.43 0.87 Br.Mn(CO) ₅ 0.43 0.87 Br.Mn(CO) ₅ 1.37 10 IMn(CO) ₃ 1.37 5 Br.Mn(CO) ₃ 0.2 1.5 Br.Mn(CO) ₃ 2.5 Br.Mn(CO) ₅ 2.75 10		(3 art mm (1)	5	:-duo:	÷e)		0		
2.75 I 1.37 I 0.0 1.83 1.83 2.75 I		s		r.t.	•†	BrMn(CO ₄)CNPh	0.I4	45	
0.5 1.83 2.75 1		20		<u>'</u>	in i	BrMn(CO) ₃ (CNPh) ₂ B-Mn (CO) (CNPh)	3.05 • 6	0/	
2.73 I		01		001 G	י ני			G #	
2.75 1	0.1 1.03	Q 01	ι Γ	4 24	n m	BrMn(CO)(CNPh)	0.63	t #	
	N	<u> </u>	-	ч	9	BrMn(CO)(CNPh)	ۍ . د د		
		οç		ч	+	CLEMP(CNPh).	t M	32	-
<u>5.1</u>		0†		R	3.5	C ₅ H ₅ M ₆ (CO) ₂ (CNPh)I	0.42	61	
C ₃ H ₃ M ₆ (CO) ₃ Cl 1.4 5 C H E2/COV 1 25 62	1.5	15 6-0	Т 5 С	<u>م</u> بر	4 (C,H,Mo(CNPh),CI	5 F C	+ <u>1</u> 1	
10.1				4	b	C ₃ H ₅ Fe(CO), I	1.0 1.0	, Ľ	
						C,H,Fe(CO)(CNPh)1	s v v	ы С С	
	1.01	10		ж:	£	C, H, Fe(CNPh), Br	0.75	37	
C ₃ H ₃ Fe(CO) ₂ Cl 4:24 20 C ₂ H ₂ Fe(CO)(CNPh)I 1 22 2 3	0.13 0.87	50 3_3 ⁺⁺	а 8 8 8	x, x:	۲.5 ۲.5	CL_C5H_5Fe(CNFh)_1 C.H.Fe(CO)(CNFh)I	0-3 1-1	so So	
		1		12	ניז ר	C ₃ H ₅ Fe(CO)(CNPh)I	0.048	مر	
• • •						C,H,Fe(CO)(PPh,)I C,H,Fe(CNPh),I	0.1 0.3S	6 ţ	
CH _a Mn(CO) ₅ 2.1 10	1.8	IS	T 40	R	m	Mn_(CO)10	0.015		
						Mn _* (CO) _* CNPh Mn _* (CO) _* (CNPh) _*	0.132 0.112	0.0 4	
C ₈ H ₅ Mn(CO) ₅ 2.7 1.5	0.1	0I	T 60	R	(1	CeH ₃ Mn(CO),	1	•	
						Mn.(CO),CNPh	0.14	י הי	
						\$(m3~~)8(~~) ² mm	Cfm-n	'n	

A = ethanol; B = benzere; D = diethylene glycol dimethyl ether; E = ether; L = ligroin, b.p. 60/30³; M = methylene chloride; P = pentane;

= tetrain/drofuran.
 * Separated by extraction of BrMr(CO)(CNPh), with benzene, leaving BrMn(CNPh), almost undissolved.
 * Separated by chromatography on alumina; products (incl. recovered starting material) are given in order of elution.
 * 1.t. = room temperature; R = at reflux.
 * Triphenylphosphine.

54

н

Product	Solocnt(s) for crystallization	М.р. (³ С)	Priscipal I.R. mazisea (cm ⁻¹): melium	Celour
BrMn(CO), CNPh BrMn(CO), CNPh BrMn(CO), (CNPh), BrMn(CO), (CNPh), BrMn(CO), (CNPh), BrMn(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Col(CNPh), Mr_1(CO), (CNPh), Mr_1(CO), (CNPh),	월 ^{时而由日} 월7월일월999	86–87 84–86 84–86 171 171 180 (dec.) 178 104–105 107 174 54 54	2188(w), 2107(w), 2045(s), 1993(m): CCl ₄ 2195(m), 2174(s), 2053(s), 2004(s), 1954(s): KCl 2179(w), 2114(s), 2049(s), 2024(s), 1942(s): KCl 2058(s), 1992(m), 1594(s): KCl 2018(v:s.), 2012(m), 1994(s): CCl ₄ 2101(v:s.), 2012(m): C_4H_4Cl_4 2101(v:s.), 2012(m): C_4H_4Cl_4 2114(v:v:s), 2016(s): KCl 2114(s), 2079(n), 2044(s), 1942(s): CCl_4 2114(s), 2079(n), 2004(s), 1942(s): CCl_4 2155(s), 1969(s): KCl 2155(s), 2056(s), 2024(w): Kl 2155(s), 2056(s), 2024(w): Kl 2155(s), 2025(w): Kl 2155(s), 2025(w): Kl 2155(s), 2025(w): Kl 2155(s), 2025(s), 2024(w): Kl 2155(s), 2025(s), 2024(w): Kl 2155(s), 2025(s), 2024(w): Kl 2155(s), 2025(s), 2024(w): Kl 2155(s), 2025(s), 2025(w): Kl 2155(s), 2125(s), 2045(s), 2045(s), 1950(s); CCl_4 2155(w), 2125(m), 2061(m), 2026(m), 1956(s), 1956(s), 1955(s), 2155(m), 2061(m), 2026(m), 2026(m), 2056(s), 2025(m), 2051(m), 2026(m), 2056(s), 2025(m), 2051(m), 2026(m), 2026(m), 2056(s), 2025(m), 2051(m), 2026(m), 2026(m), 2056(s), 2025(m), 2051(m), 2026(m), 2026(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(m), 2056(s), 2025(m), 2051(m), 2026(m), 2056(s), 2025(m), 2051(m), 2026(m), 2056(s), 2025(m), 2056(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(m), 2056(s), 2025(m), 2056(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 2056(s), 2025(m), 2056(s), 2025(m), 2056(s), 20	Yellow Pale Yellow Yellow Orange Colourless Pale Yellow Red Brown Red Purple Orange Yellow Yellow

TABLE 2

* As in Table 1.

J. Organometal, Chem., 1 (1963) 51-57

Product Empirical Formula			Found				Caled.		14
	anda C		"	N	Other	0	"	N	11717
			•						
	-	··· +	1.8	÷.2		37.7	÷i	0.4	
	-	4.7	1	2,0		.18.0	7.4	6,6	
		55-4	З.о	8.7		55.2	3.0	8.4	
		5.0		9,2		55.0	3.3	0.0	
BrAn(CO)(CNPh), Caultan Caultan (CO)	-	ų	0.4	9.7	Br, 14.0	00'0	3.5	6.6	Br, 13.9
					0, 3, I				0, 2.8 mal mt 2
		;	,		/ng '.1w.totu	•		9	
		ç	÷	0'11	Dr., 12.5	0't'0	0.E	10.8	(3r, 12.2
		5.7	÷:5	8.11		71.1	÷.3	11.8	
		0',	7:1	3.5	0, 7.0	37.6	5,3 5,3	3.1	0, 7.2
		3.9	3. ľì	8.5		0 ⁺⁻¹	0'f	8.3	
		1.7	2.8	3.8		41.2	2.7	3.7	
J,Fe(CNPh),J C, C, H, FelN,		0'0	3.7	5.5		50.2	3.3	6.1	
				1.1				6.9	
		7.0	4.5	9.1		(i7.n	£.÷	0'0	
		1.1	5:1	3.1		E-1+		3.0	
$Mn_{a}(CO)_{a}(CNPh)_{a} = C_{aa}II_{10}Mn_{a}N_{a}O_{b}$	_	1.01	2,6	5.3		6.8	671	5.2	

K. K. JOSHI, P. L. PAUSON, W. H. STUBBS

J. Organometal. Chem., 1 (1963) 5:

Reaction conditions are indicated in Table I; properties of the products in Table 2 and analyses in Table 3.

The mixtures were heated with stirring at the temperatures and for the times indicated. The solvent and excess isocvanide (if any) were then removed by distillation in vacuo and the products purified by chromatography and/or by recrystallisation as indicated.

ACKNOWLEDGEMENTS

The authors thank the Ethvl Corporation for generous supplies of manganese and molybdenum carbonyls and International Nickel (Mond) Ltd., for iron carbonyl. W.H.S. also thanks the Department of Scientific and Industrial Research for the award of a Research Studentship.

SUMMARY

The reactions of phenyl isocvanide with various halomanganese carbonyls, methyland phenylmanganese pentacarbonyls, halocyclopentadienyl-molybdenum and -iron carbonyls are described. The dependence of the degree of substitution on the nature of the halogen and the solvent is examined. As a result a number of new isocyanide derivatives of these metals have been isolated and characterised.

REFERENCES

- 1a W. HIEBER AND L. SCHUSTER, Z. Anorg. Allgem. Chem., 287 (1956) 2:4.
- b W. HIEBER AND W. SCHROPP, Z. Naturforsch., 14b (1959) 460.

- b W. HIEBER AND W. SCHROPP, Z. Naturforsch., 140 (1959) 466.
 c W. HIEBER AND K. WOLLMANN, Chem. Ber., 95 (1962) 1552.
 d W. HIEBER AND TH. KRUCK, Chem. Ber., 95 (1962) 2027.
 M. FRENI AND V. VALENTI, J. Iworg. Nucl. Chem., 15 (1961) 240.
 3a E. W. ABEL AND G. WILKINSON, J. Chem. Soc., (1959) 1501.
 b H. C. E. MANNERSKANTZ AND G. WILKINSON, J. Chem. Soc., (1962) 4454.
 4a R. J. ANGELICI AND F. BASOLO, J. Am. Chem. Soc., S2 (1962) 2495.
 b A. WOLCICKY LYD F. BASOLO, J. Am. Chem. Soc., S2 (1962) 2495.
- b A. WOJCICKI AND F. BASOLO, J. Am. Chem. Soc., 83 (1961) 525.
- 5 A. G. OSBORNE AND M. H. B. STIDJARD, J. Chem. Soc., (1962) 4715.
 6 J. CHATT, I'. L. PAUSON AND L. M. VENANZI, in H. H. ZEISS, Grganometallic Chemistry, Reinhold, New York, 1960, p. 468-528.
- A. SACCO, Gazz. Chim. Ital., 86 (1956) 201.
- R. P. M. WERNER AND T. H. COFFIELD, Chem. Ind. (London), (1950) 936.
 K. K. JOSHI, P. L. PAUSON AND W. H. STUBES, unpublished observations.
- F. BASOLO AND R. G. PEARSON, in H. J. EMELEUS AND A. G. SHARPE, Advances in Inorganic Chemistry and Radiochemistry, Vol. 3, Academic Press, New York, 1961, p. 1-89. 10
- 11 R. J. ANGELICI, F. BASOLO AND A. POE, Nature, 195 (1962) 993.
- 12 A. DAVISON, M. L. H. GREEN AND G. WILKINSON, J. Chem. Soc., (1961) 3172.
- K. A. KEBLVS AND A. H. FILBEY, J. Am. Chem. Soc., S2 (1960) 4204. 13
- 14 I. UGI AND R. MEYR, Org. Syn., 41 (1961) 101.
- 15 T. S. PIPER AND G. WILKINSON, J. Inorg. Nucl. Chem., 3 (1956) 104.
- 16 B. F. HALLAM AND P. L. PAUSON, J. Chem. Soc., (1956) 3030.
- 17 T. H. COFFIELD, J. KOZIKO VSKI AND R. D. CLOSSON, J. Org. Chem., 22 (1957) 598.

J. Organometal. Chem., 1 (1963) 51-57